ROHS
Available on commercial versions

PNP SWITCHING SILICON TRANSISTOR Qualified per MIL-PRF-19500/290

DESCRIPTION

This family of 2N2904AL and 2N2905AL switching transistors are military qualified up to the JANS level for high-reliability applications. These devices are also available in a TO-39 package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surfacemount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N2904 through 2N2905 series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/290.
(See part nomenclature for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- General purpose transistors for high speed switching applications.
- Military and other high-reliability applications.

MAXIMUM RATINGS

Parameters / Test Conditions	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	60	V
Collector-Base Voltage	$\mathrm{V}_{\text {cbo }}$	60	V
Emitter-Base Voltage	$\mathrm{V}_{\text {Ebo }}$	5.0	V
Thermal Resistance Junction-to-Ambient	ReJa	195	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction-to-Case	R өлс	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Collector Current	Ic	600	mA
$\begin{array}{ll}\text { Total Power Dissipation } & \text { @ } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}{ }^{(1)} \\ & @ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}{ }^{(2)}\end{array}$	$\mathrm{P}_{\text {T }}$	$\begin{aligned} & 0.8 \\ & 3.0 \end{aligned}$	W
Operating \& Storage Junction Temperature Range	T_{J} and $\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$

Notes: 1. For derating, see figures 1 and 2.
2. For thermal impedance, see figures 3 and 4.

Qualified Levels:
JAN, JANTX, JANTXV and JANS

TO-5 Package

Also available in:
TO-39 (TO-205AD)
package
(long-leaded)
2N2904 \& 2N2905A

MSC - Lawrence
6 Lake Street, Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600

Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 656840044
Fax: +353 (0) 656822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead plate or RoHS compliant matte/tin (commercial grade only) over nickel.
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: PNP (see package outline).
- WEIGHT: Approximately 1.14 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS \& DEFINITIONS	
Symbol	Definition
$\mathrm{C}_{\text {obo }}$	Common-base open-circuit output capacitance.
$\mathrm{I}_{\text {CEO }}$	Collector cutoff current, base open.
$\mathrm{I}_{\text {CEx }}$	Collector cutoff current, circuit between base and emitter.
$\mathrm{I}_{\text {EBO }}$	Emitter cutoff current, collector open.
$\mathrm{h}_{\text {FE }}$	Common-emitter static forward current transfer ratio.
$\mathrm{V}_{\mathrm{CEO}}$	Collector-emitter voltage, base open.
$\mathrm{V}_{\text {CBO }}$	Collector-emitter voltage, emitter open.
$\mathrm{V}_{\text {EBO }}$	Emitter-base voltage, collector open.

ELECTRICAL CHARACTERISTICS @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Current $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	$V_{\text {(BR)CEO }}$	60		V
Collector-Emitter Cutoff Voltage $\mathrm{V}_{\mathrm{CE}}=60 \mathrm{~V}$	$I_{\text {ces }}$		1.0	$\mu \mathrm{A}$
Collector-Base Cutoff Current	$\begin{aligned} & \mathrm{I}_{\mathrm{CBO} 1} \\ & \mathrm{I}_{\mathrm{CBO} 2} \\ & \mathrm{I}_{\mathrm{CBO}} \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ nA $\mu \mathrm{A}$
Collector-Base Cutoff Current $\begin{aligned} & V_{C B}=50 \mathrm{~V} \\ & V_{C B}=60 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {CBO }}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	nA $\mu \mathrm{A}$
Emitter-Base Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{EB}}=3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V} \end{aligned}$	$I_{\text {ebo }}$		$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$

ON CHARACTERISTICS ${ }^{(1)}$					
Forward-Current Transfer Ratio					
$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	2N2904AL		40		
	2N2905AL		75		
$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	2N2904AL		40	175	
	2N2905AL		100	450	
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	2N2904AL	$\mathrm{h}_{\text {FE }}$	40		
	2N2905AL		100		
$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	2N2904AL		40	120	
	2N2905AL		100	300	
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	$\begin{aligned} & \text { 2N2904AL } \\ & \text { 2N2905AL } \end{aligned}$		$\begin{aligned} & 40 \\ & 50 \end{aligned}$		
Collector-Emitter Saturation Voltage $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA} \end{aligned}$		$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$		$\begin{aligned} & 0.4 \\ & 1.6 \end{aligned}$	V
Base-Emitter Saturation Voltage $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA} \end{aligned}$		$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		$\begin{aligned} & 1.3 \\ & 2.6 \end{aligned}$	V

(1) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, duty cycle $\leq 2.0 \%$.

ELECTRICAL CHARACTERISTICS @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted (continued)
DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward-Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}$				
Small-Signal Short-Circuit Forward-Current Transfer Ratio	h_{fe}		100	
$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$		2.0		
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		8.0	pF
lutput $C a p a c i t a n c e ~$ $\mathrm{~V}_{\mathrm{EB}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{ibo}}$		30	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time	t^{t} on		45	ns
Turn-Off Time	t^{t} off		300	ns

GRAPHS

FIGURE 1
Derating ($\mathrm{R}_{\theta \mathrm{\theta JA}}$) PCB

FIGURE 2
Derating ($\mathrm{R}_{\theta \mathrm{OJA}}$) PCB

FIGURE 3
Thermal impedance graph ($\mathrm{R}_{\theta(\mathrm{JAA}}$)

FIGURE 4
Thermal impedance graph ($\mathrm{R}_{\underline{\underline{J J A}}}$)

PACKAGE DIMENSIONS

Symbol	Dimensions				Note					
	Inch		Millimeters							
	Min	Max	Min	Max						
CD	0.305	0.335	7.75	8.51						
CH	0.240	0.260	6.10	6.60						
HD	0.335	0.370	8.51	9.40						
LC	0.200 TP		5.08 TP		6					
LD	0.016	0.021	0.41	0.53	7,8					
LL	0.500	0.750	12.70	19.05	$7,8,12$					
LU	0.016	0.019	0.41	0.48	7,8					
L1		0.050		1.27	7,8					
L2	0.250		6.35		7,8					
P	0.100		2.54							
Q		0.050		1.27	5					
TL	0.029	0.045	0.74	1.14	4					
TW	0.028	0.034	0.71	0.86	3					
r		0.010		0.25	10					
\mathbf{a}	45° TP							45° TP		6

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Beyond r (radius) maximum, TW shall be held for a minimum length of . $011(0.28 \mathrm{~mm})$.
4. Dimension TL measured from maximum HD.
5. Body contour optional within zone defined by HD, CD, and Q.
6. Leads at gauge plane $.054+.001-.000$ inch $(1.37+0.03-0.00 \mathrm{~mm})$ below seating plane shall be within .007 inch $(0.18 \mathrm{~mm})$ radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
8. All three leads.
9. The collector shall be internally connected to the case.
10. Dimension r (radius) applies to both inside corners of tab.
11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
12. For " L " suffix devices, dimension $L L$ is $1.50(38.10 \mathrm{~mm})$ minimum, $1.75(44.45 \mathrm{~mm})$ maximum.
13. Lead $1=$ emitter, lead $2=$ base, lead $3=$ collector.
