November 1993 Revised August 2001

74ABT16952 **16-Bit Registered Transceiver with 3-STATE Outputs**

General Description

FAIRCHILD

SEMICONDUCTOR

The ABT16952 is a 16-bit registered transceiver. Two 8-bit back to back registers store data flowing in both directions between two bidirectional buses. Separate clock, clock enable and 3-STATE output enable signals are provided for

each register. The output pins are guaranteed to source

Features

- Separate clock, clock enable and 3-STATE output enable provided for each register
- A and B output sink capability of 64 mA source capability of 32 mA
- Guaranteed latchup protection

Connection Diagram

OEAB₁

■ High impedance glitch free bus loading during entire power up and power down cycle

> 56 - OFBA

47 — В₄

46 - GND

45

43

41 - Bg 40 - B₁₀

39 - GND 38 — B₁₁

37 - B₁₂

34 - B_{1.4} 33 B₁₅

30 — СРВА₂

29 - 0EBA2

36 B₁₃

35 - V_{CC}

32 GND 31 - CEB2

Bo

• B₅ 44 - B_R

- B₇ 42 - B₈

Nondestructive hot insertion capability

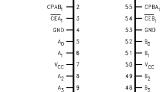
Ordering Code:

32 mA and to sink 64 mA.

Order Number	Package Number	Package Description			
74ABT16952CSSC	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide			
74ABT16952CMTD MTD56 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide					
Devices also available in Tape and Reel. Specify by appending the letter suffix "X" to the ordering code.					

Pin Descriptions

Pin Names	Description
A ₀ -A ₁₅	Data Register A Inputs/
	B-Register 3-STATE Outputs
B ₀ -B ₁₅	Data Register B Inputs/
	A-Register 3-STATE Outputs
CPAB _n , CPBA _n	Clock Pulse Inputs
CEA _n , CEB _n	Clock Enable
OEAB _n , OEBA _n	Output Enable Inputs


Output Control

C	DE	Internal Q	Output	Function
	Н	Х	Z	Disable Outputs
	L	L	L	Enable Outputs
	L	Н	Н	

Register Function Table

()	(Applies to A or B Register)							
ſ	Inputs			Internal	Function			
ſ	D	СР	CE	Q	Function			
ſ	Х	Х	Н	NC	Hold Data			
	L	L		L	Load Data			
	H L H							
	H = HIGH Voltage Level Z = HIGH Impedance L = LOW Voltage Level \checkmark = LOW-to-HIGH Transition							
	L H = HIGH Vo	× \ \ \		L H mpedance	Load Data			

X = Immaterial NC = No Change

A. • GND ·

 A_5

Аĸ

A., •

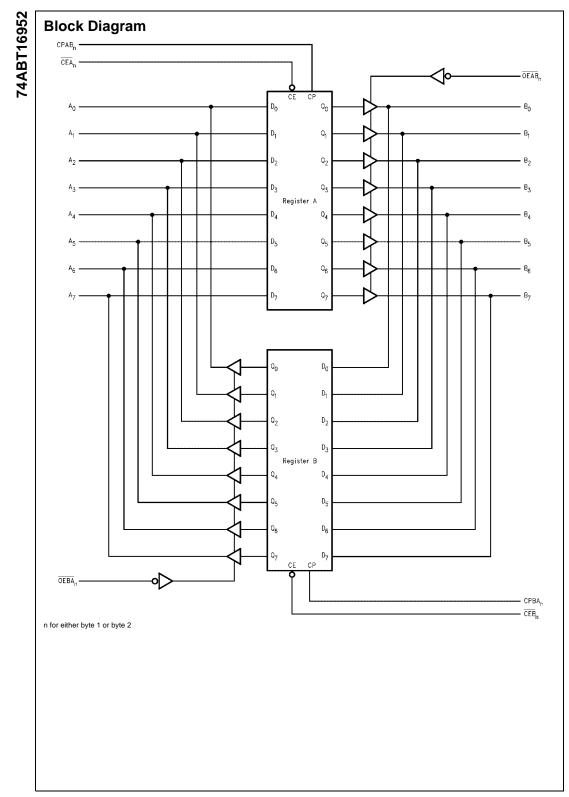
A₈

A10 ' GND 18

A_{1.1} 19 A_{1.2} 20

A₁₃

CEA2 -26 CPAB2 -27


OEAB₂

22 Vcc A_{1.4} 23

24 A_{1.5} GND -25

28

© 2001 Fairchild Semiconductor Corporation DS011647

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disable or Power-Off State	-0.5V to +5.5V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
DC Latchup Source Current	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns
Clock Input	100 mV/ns

74ABT16952

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

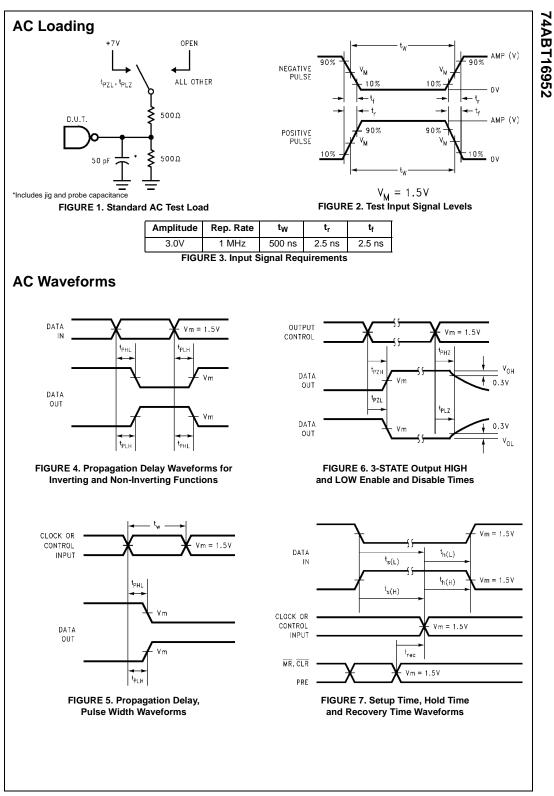
Symbol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O Pins)
V _{OH}	Output HIGH Voltage	2.5			V	Min	$I_{OH} = -3 \text{ mA} (A_n, B_n)$
		2.0			v	IVIIII	$I_{OH} = -32 \text{ mA} (A_n, B_n)$
V _{OL}	Output LOW Voltage			0.55	V	Min	I _{OL} = 64 mA (A _n , B _n)
V _{ID}	Input Leakage Test	4.75			v	0.0	I _{ID} = 1.9 μA (Non-I/O Pins)
		4.75			v	0.0	All Other Pins Grounded
I _{IH}	Input HIGH Current			1	μA	Max	V _{IN} = 2.7V (Non-I/O Pins) (Note 4
				1	μΛ	IVIAX	V _{IN} = V _{CC} (Non-I/O Pins)
I _{BVI}	Input HIGH Current Breakdown Test			7	μΑ	Max	V _{IN} = 7.0V (Non-I/O Pins)
I _{BVIT}	Input HIGH Current Breakdown Test (I/O)			100	μΑ	Max	V _{IN} = 5.5V (A _n , B _n)
I _{IL}	Input LOW Current			-1	μA	Max	V _{IN} = 0.5V (Non-I/O Pins) (Note 4
				-1	μΑ	IVIAX	V _{IN} = 0.0V (Non-I/O Pins)
I _{IH} + I _{OZH}	Output Leakage Current			10	μΑ	0V-5.5V	$V_{OUT} = 2.7V (A_n, B_n);$
							\overline{OEA} or $\overline{OEB} = 2.0V$
I _{IL} + I _{OZL}	Output Leakage Current			-10	μΑ	0V-5.5V	$V_{OUT} = 0.5V (A_n, B_n);$
							\overline{OEA} or $\overline{OEB} = 2.0V$
I _{OS}	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0V (A_n, B_n)$
I _{CEX}	Output HIGH Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n)$
I _{ZZ}	Bus Drainage Test			100	μΑ	0.0V	$V_{OUT} = 5.5V (A_n, B_n);$
							All Others GND
I _{CCH}	Power Supply Current			1.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current			60	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current			1.0	mA	Max	Outputs 3-STATE;
							All Others GND
I _{CCT}	Additional I _{CC} /Input			2.5	mA	Max	$V_I = V_{CC} - 2.1V$; All Others
							at V _{CC} or GND
ICCD	Dynamic I _{CC} No Load				mA/	Max	Outputs OPEN
	(Note 4)		0.1	0.18	MHz	IVIAX	\overline{OEA} or $\overline{OEB} = GND$,
							Non-I/O = GND or V_{CC}
							One Bit toggling, 50% duty cycle
							(Note 3)

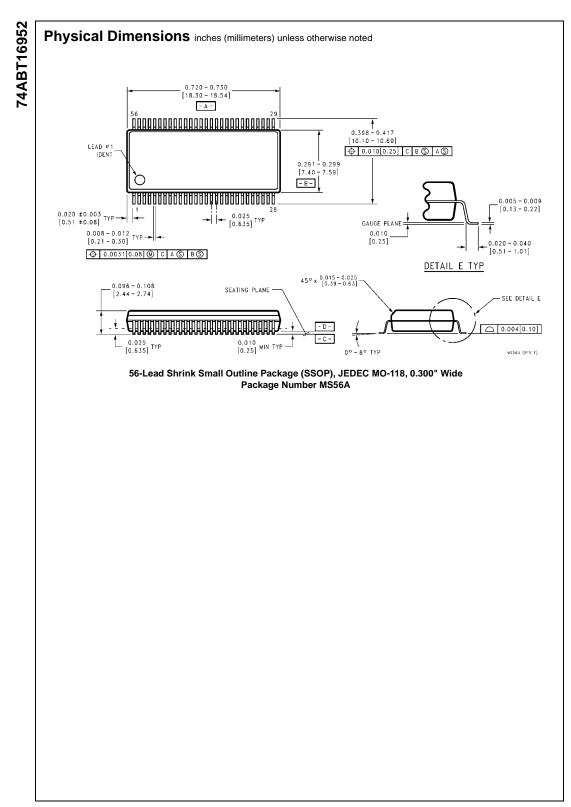
Note 3: For 8-bit toggling, I_{CCD} <1.4 mA/MHz. Note 4: Guaranteed, but not tested.

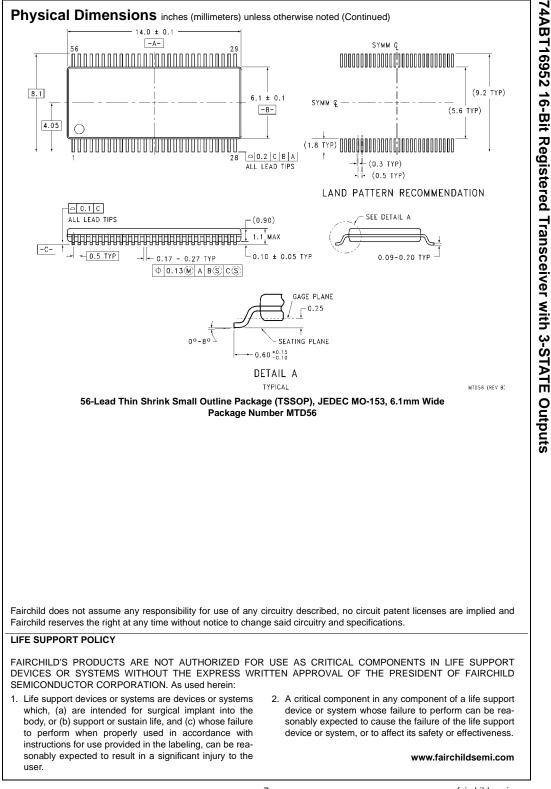
Note 4: Guaranteed, but not tested.

74ABT16952

AC Electrical Characteristics


(SSOP Package) $T_{A}=-40^{\circ}C$ to $+85^{\circ}C$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $V_{CC}=4.5V \ to \ 5.5V$ Symbol Parameter Units $C_L = 50 \ pF$ $C_L = 50 \ pF$ Min Max Min Max f_{MAX} Maximum Clock Frequency 200 200 MHz 1.5 5.3 t_{PLH} Propagation Delay 1.5 5.3 ns CPAB_n or CPBA_n to A_n or B_n 1.5 t_{PHL} 5.3 1.5 5.3 Output Enable Time 1.5 1.5 5.5 5.5 t_{PZH} ns $\overline{\text{OEAB}}_n$ or $\overline{\text{OEBA}}_n$ to A_n or B_n 1.5 5.5 1.5 5.5 t_{PZL} Output Disable Time 1.5 6.0 1.5 6.0 t_{PHZ} ns $\overline{\mathsf{OEAB}}_n$ or $\overline{\mathsf{OEBA}}_n$ to A_n or B_n 1.5 t_{PLZ} 6.0 1.5 6.0


AC Operating Requirements


Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$		Units	
		Min	Max	Min	Max	1	
t _S (H)	Setup Time, HIGH	2.5		2.5		20	
t _S (L)	or LOW A_n or B_n to \overline{CPAB}_n or \overline{CPBA}_n	2.5		2.5		ns	
t _H (H)	Hold Time, HIGH	1.5		1.5		ns	
t _H (L)	or LOW A_n or B_n to \overline{CPAB}_n or \overline{CPBA}_n	1.5		1.5			
t _S (H)	Setup Time, HIGH	2.5		2.5		ns	
t _S (L)	or LOW \overline{CEA}_n or \overline{CEB}_n to \overline{CPAB}_n or \overline{CPBA}_n	2.5		2.5			
t _H (H)	Hold Time, HIGH	1.5		1.5		ns	
t _H (L)	or LOW \overline{CEA}_n or \overline{CEB}_n to \overline{CPAB}_n or \overline{CPBA}_n	1.5		1.5		115	
t _W (H)	Pulse Width,	3.0		3.0		ns	
t _W (L)	HIGH or LOW to CPAB _n or CPBA _n	3.0		3.0		115	
		Capacitar	ice				

Symbol	Symbol Parameter		Units	Conditions T _A = 25°C	
C _{IN}	Input Capacitance	5	pF	V _{CC} = 0V (Non I/O Pins)	
C _{I/O} (Note 5)	Output Capacitance	11	pF	$V_{CC} = 5.0V (A_n, B_n)$	

Note 5: $C_{I/O}$ is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

