
# Thin Film Directional Couplers Wide Band High Directivity



### CP0402W2700FNTR



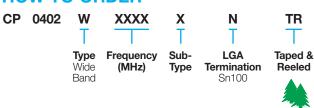
### **ITF TECHNOLOGY**

The ITF High Directivity Wide Band LGA Coupler is based on thinfilm multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The Wide Band High Directivity Coupler displays a stable coupling factor over a wide frequency band.

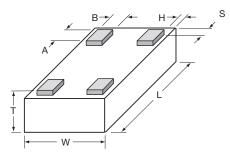
### **APPLICATIONS**

- Mobile communications
- Satellite TV receivers
- GPS


**RoHS** 

- Vehicle location systems
- Wireless LAN's

# LAND GRID ARRAY ADVANTAGES


- Inherent Low Profile
- Self Alignment during Reflow
- Excellent Solderability
- Low Parasitics
- Better Heat Dissipation

### **HOW TO ORDER**



## **DIMENSIONS (Bottom View)**

mm (inches)



| L    | 1.00±0.05<br>(0.040±0.002) |  |  |  |
|------|----------------------------|--|--|--|
| w    | 0.58±0.04<br>(0.023±0.002) |  |  |  |
| Т    | 0.35±0.05<br>(0.014±0.002) |  |  |  |
| A    | 0.20±0.05<br>(0.008±0.002) |  |  |  |
| В    | 0.18±0.05<br>(0.007±0.002) |  |  |  |
| S, H | 0.05±0.05<br>(0.002±0.002) |  |  |  |

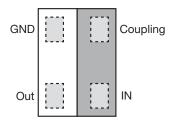
### **QUALITY INSPECTION**

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

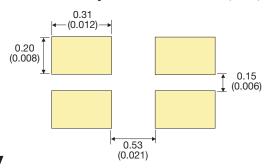
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, I<sub>R</sub>, 4 hours

### **TERMINATION**

Nickel/Lead Free solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.


### **OPERATING TEMPERATURE**

-40°C to +85°C


### **POWER RATING**

3W RF Continuous

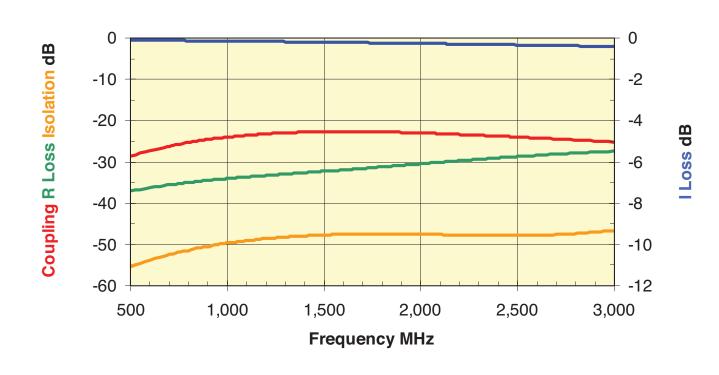
# **TERMINALS (Top View)**



#### Recommended Pad Layout Dimensions mm (inches)






# Thin Film Directional Couplers Wide Band High Directivity



# **CP0402W2700FNTR**

### **Directional Coupler Type CP0402W2700FNTR**

| P/N             | Frequency<br>[MHz] | Coupling [dB] | I. Loss<br>max.<br>[dB] | Return<br>Loss<br>[dB] | Directivity<br>[dB] |
|-----------------|--------------------|---------------|-------------------------|------------------------|---------------------|
| CP0402W2700FNTR | 700-2,700          | 24±2          | 0.3                     | 18                     | 20                  |



# Thin Film Directional Couplers Wide Band High Directivity



# CP0402W2700FNTR Test Jigs

### **GENERAL DESCRIPTION**

These jigs are designed for testing the CP0402W2700FNTR High Directivity Couplers using a Vector Network Analyzer.

They consist of a dielectric substrate, having  $50\Omega$  microstrips as conducting lines and a bottom ground plane located at a distance of 0.254mm (0.010") from the microstrips.

The substrate used is Neltec's NH9338ST0254C1BC.

The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841.

Both a measurement jig and a calibration jig are provided.

The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a  $50\Omega$  SMA termination.

### **MEASUREMENT PROCEDURE**

When measuring a component, it can be either soldered or pressed using a non-metallic stick until all four ports touch the appropriate pads. Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig

terminal connected to port 2. Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.

### Place the coupler on the measurement jig as follows:

GND (Coupler) → Connector 1 (Jig) IN (Coupler) → Connector 3 (Jig) Coupling (Coupler) → Connector 2 (Jig) Out (Coupler) → Connector 4 (Jig)

#### To measure I. Loss connect:

Connector 3 (Jig) → Port 1 (VNA) Connector 2 (Jig) → 50Ω Connector 4 (Jig) → Port 2 (VNA)

### To measure R. Loss and Coupling connect:

Connector 3 (Jig) → Port 1 (VNA) Connector 4 (Jig) → 50Ω Connector 2 (Jig) → Port 2 (VNA)

### To measure Isolation connect:

Connector 4 (Jig)  $\rightarrow$  Port 1 (VNA) Connector 2 (Jig)  $\rightarrow$  Port 2 (VNA) Connector 3 (Jig)  $\rightarrow$  50 $\Omega$ 

#### Measurement Jig Calibration Jig Connector 1 Short Line (not used) to GND. Connector Johnson Connector 2 P/N 142-0701-841 공 **OPEN OPEN** ΤH TH Load & Connector 4 Open Through Line Load & Connector 3 Through

