April 1992 Revised March 2002 74ABT162244 16-Bit Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

FAIRCHILD

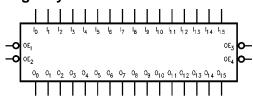
SEMICONDUCTOR TM

74ABT16224416-Bit Buffer/Line Driver with25Ω Series Resistors in the Outputs

General Description

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual 3-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.


Features

- Separate control logic for each nibble
- 16-bit version of the ABT2244
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability

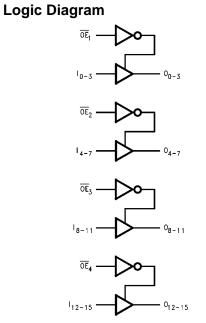
Ordering Code:

Order Number	Package Number	Package Description
74ABT162244CSSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ABT162244CSSX	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ABT162244CMTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74ABT162244MTDX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

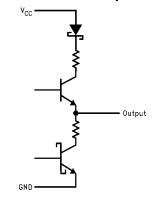
Logic Symbol

Pin Descriptions

Pin Names	Description		
OE n	Output Enable Input (Active LOW)		
I ₀ —I ₁₅	Inputs		
O ₀ -O ₁₅	Outputs		


Connection Diagram

···			
ŌĒ1		48	
°0 —	2	47	- 'o ²
o ₁ –	3	46	-4
GND -	4	45	- GND
0 ₂ —	5	44	- 12
03 –	6	43	-13
v _{cc} –	7	42	- v _{cc}
°₄ —	8	41	-14
0 ₅ —	9	40	-15
GND -	10	39	- GND
0 ₆ —	11	38	— 1 ₆
0 ₇ -	12	37	- 1-7
0 ₈ —	13	36	- 1 ₈
0, –	14	35	- ů
GND -	15	34	- GND
0 ₁₀ —	16	33	- 40
011-	17	32	- 41
v _{cc} –	18	31	- v _{cc}
012	19	30	- h2
0 ₁₃ —	20	29	- 13
GND -	21	28	- GND
014	22	27	- 1 ₁₄
0 ₁₅ —	23	26	- I ₁₅
OE4	24	25	
, i			


74ABT162244

Truth Tables

In	puts	Outputs
OE ₁	I ₀ –I ₃	0 ₀ –0 ₃
L	L	L
L	н	н
Н	Х	Z
In	puts	Outputs
OE ₃	I ₈ –I ₁₁	0 ₈ –0 ₁₁
L	L	L
L	н	н
Н	Х	Z
In	puts	Outputs
OE ₂	I ₄ —I ₇	0 ₄ –0 ₇
L	L	L
L	Н	н
Н	Х	Z
In	puts	Outputs
OE ₄	I ₁₂ –I ₁₅	0 ₁₂ –0 ₁₅

Schematic of each Output

н H = HIGH Voltage Level

L

L = LOW Voltage Level X = Immaterial Z = High Impedance

Functional Description

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

н

Х

н

Ζ

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
DC Latchup Source Current	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

74ABT162244

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

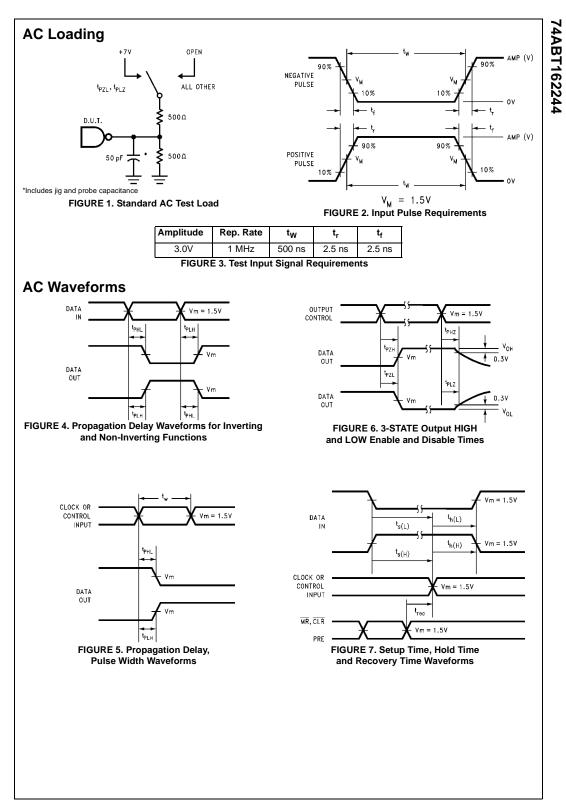
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

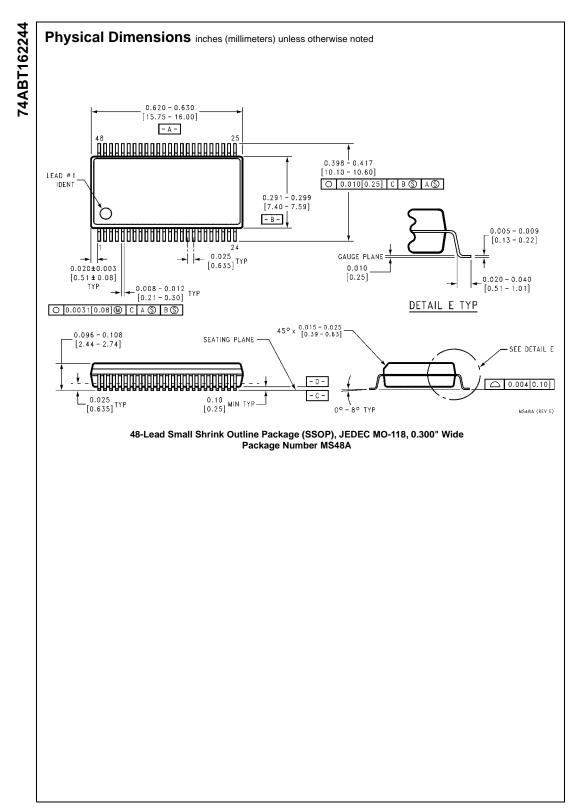
DC Electrical Characteristics

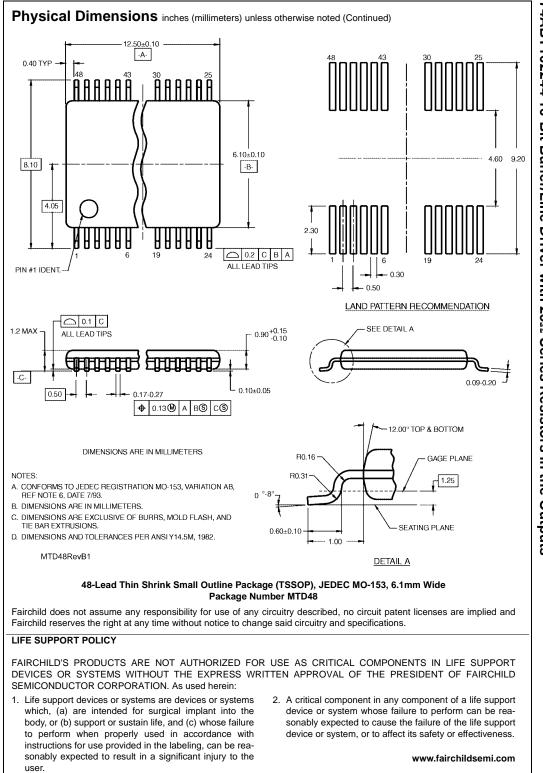
Symbol	Parameter	r	Min	Тур	Max	Units	V _{CC}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	$I_{OH} = -3 \text{ mA}$
		F	2.0			V	Min	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage				0.8	V	Min	I _{OL} = 12 mA
I _{IH}	Input HIGH Current				1		Max	V _{IN} = 2.7V (Note 3)
					1	μA	IvidA	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Breakd	own Test			7	μA	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current				-1		Max	V _{IN} = 0.5V (Note 3)
					-1	μA	IVIAX	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$
								All Other Pins Grounded
I _{OZH}	Output Leakage Current				10	μA	0-5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Current				-10	μA	0-5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{OS}	Output Short-Circuit Curren	it	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output High Leakage Curre	ent			50	μΑ	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current				2.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				60	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				2.0	mA	Max	$\overline{OE}_n = V_{CC}$
·								All Others at V _{CC} or GND
I _{CCT}	Additional I _{CC} /Input C	Outputs Enabled			3.0	mA	<u> </u>	$V_{I} = V_{CC} - 2.1V$
	(Outputs 3-STATE			3.0	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
	(Outputs 3-STATE			50	μA		Data Input V _I = V _{CC} - 2.1V
					ļ			All Others at V _{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs OPEN
	(Note 3)				0.1	MHz	Iviax	$\overline{OE}_n = GND$
								One Bit Toggling, 50% Duty Cycl

Note 3: Guaranteed, but not tested.

74ABT162244


AC Electrical Characteristics


Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5V$ $C_{L} = 50 \text{ pF}$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation	1.0	2.4	3.9	1.0	3.9	ns
t _{PHL}	Delay Data to Outputs	1.0	3.2	4.7	1.0	4.7	115
t _{PZH}	Output	1.5	3.5	6.3	1.5	6.3	
t _{PZL}	Enable Time	1.5	4.2	6.9	1.5	6.9	ns
t _{PHZ}	Output	1.0	4.2	6.7	1.0	6.7	20
t _{PLZ}	Disable Time	1.0	3.8	6.7	1.0	6.7	ns


Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
CIN	Input Capacitance	5.0	pF	$V_{CC} = 0.0V$
C _{OUT} (Note 4)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 4: C_{OUT} is measured at frequency f = 1 MHz per MIL-STD-883, Method 3012.

